
Constraints as Prior Knowledge

Ming-Wei Chang mchang21@uiuc.edu

Lev Ratinov ratinov2@uiuc.edu

Dan Roth danr@uiuc.edu

Computer Science Department, University of Illinois at Urbana-Champaign

Abstract

Making complex decisions in real world prob-
lems often involves assigning values to sets
of interdependent variables where an expres-
sive dependency structure among these can
influence, or even dictate, what assignments
are possible. Commonly used models typi-
cally ignore expressive dependencies since the
traditional way of incorporating non-local de-
pendencies is inefficient and hence lead to ex-
pensive training and inference.

This paper presents Constrained Conditional
Models (CCMs), a framework that augments
probabilistic models with declarative con-
straints as a way to support decisions in
an expressive output space while maintain-
ing modularity and tractability of training.
We develop, analyze and compare novel al-
gorithms for training and inference with
CCMs. Our main experimental study ex-
hibits the advantage our framework provides
when declarative constraints are used in the
context of supervised and semi-supervised
training of a probabilistic model.

1. Introduction

Decision making in domains such as natural language
often involve assigning values to sets of interdepen-
dent variables where the expressive dependency struc-
ture among variables of interest can influence, or even
dictate, what assignments are possible. To cope with
these difficulties, problems are typically modeled as
stochastic processes involving both output variables
(whose values are sought) and information sources, of-
ten referred to as input or observed variables.

This work was supported by NSF grant NSF SoD-HCER-0613885, DARPA
funding under the Bootstrap Learning Program and by MIAS, a DHS-IDS
Center for Multimodal Information Access and Synthesis at UIUC.

There exist several fundamentally different approaches
to learning models that can assign values simultane-
ously to several interdependent variables (Punyakanok
et al., 2005). Two extremes are to (1) completely ig-
nore the output structure at the learning stage (by
learning multiple independent models), while enforc-
ing coherent assignments at the inference stage and
(2) model, directly or indirectly, the dependencies
among the output variables in the learning process and
thus induce models that optimize a global performance
measure. In the latter scenario, to allow efficient train-
ing and inference, assumptions on the probability dis-
tribution are made so that it is possible to factor the
model into functions of subsets of the variables, yield-
ing models such as Conditional Random Fields (CRFs)
and Hidden Markov Models (HMMs).

However, in many problems, dependencies among out-
put variables have non-local nature, and incorporating
them into the model as if they were probabilistic phe-
nomena can undo a great deal of the benefit gained by
factorization, as well as making the model more diffi-
cult to design and understand. For example, consider
an information extraction task where two particular
types of entities cannot appear together in the same
document. Modeling mutual exclusion in the scenario
where n random variables can be assigned mutually
exclusive values introduces n2 pairwise edges in the
graphical model, with obvious impact on training and
inference. While efficient algorithms for leveraging a
particular type of constraint can be developed, mod-
eling of declarative non-local constraints this way is
clearly very expensive. Moreover, a lot of parameters
are being wasted in order to to learn something the
model designer already knows.

This paper presents Constrained Conditional Models
(CCMs). Generalizing and formalizing an approach
introduced in (Roth & Yih, 2004; Roth & Yih, 2007),
CCM is a framework that augments linear objective
functions with declarative constraints as a way to sup-
port decisions in an expressive output space. CCMs

Constraints as Prior Knowledge

inject the constraints directly instead of doing it indi-
rectly via a probability model. CCM allows the use
of expressive constraints while keeping models simple
and easy to understand. Factoring the models by sep-
arating declarative constraints naturally brings up in-
teresting questions and calls for novel training and in-
ference algorithms, as we discuss in this paper.

One interesting perspective is that the declarative con-
straints can be viewed as domain-specific knowledge
which can be injected into the model in the super-
vised and, more interestingly, in the semi-supervised
setting. We develop a formalism for constraints-based
learning within the CCM framework. Our protocol can
be used in the presence of any learning model, includ-
ing those that acquire additional statistical constraints
from observed data while learning. We experiment and
report results with two models: maximum likelihood
HMM (Rabiner & Juang, 1986) and its discrimina-
tive counterpart–the structured perceptron (Collins,
2002). We exhibit significant reduction in the num-
ber of training examples required in two information
extraction problems. The results show that our ap-
proach yields very good results even in the presence of
a small number of labeled examples.

2. Linear Models for Sequence Labeling

Tasks

Although the discussion in this paper can be applied to
other types of problems, we mainly focus on an impor-
tant type of structured prediction problems: sequence
labeling tasks. Given x as a series of tokens, we denote
xi as the i-th token of x. Assuming there are T tokens
in x, the assignment y can be written as y1, y2, . . . yT ,
where yi is the label for token xi. The task in sequence
labeling is to learn a model that can be used to predict
the correct y given a new instance x.

Linear models are the dominant family in machine
learning, and can be represented as a weight vector w,
corresponding to a set of feature functions {Φ}. For
an input instance x and an output assignment y, the
“score” of the instance can be expressed as a weighted
sum of feature functions: f(x,y) =

∑
wiφi(x,y).

Many different discriminative and generative learning
algorithms can be represented as linear models. For
example, models trained by Perceptron, näıve Bayes,
and SVM, CRF and HMMs are linear models (Roth,
1999; Collins, 2002; Lafferty et al., 2001). Hidden
Markov Model (HMM) is one of the most commonly
used models for sequence labeling. Past works have
shown that the prediction problem in HMMs can be
viewed as a linear model over “local” features (Roth,

1999; Collins, 2002). That is, one can show that:

argmax
y

log P (y|x) = argmax
y

wT Φ(x,y), (1)

where w is a weight vector and Φ represents the feature
functions, is an equivalent representation of HMM.

3. Training and Inference with

Constraints

Although, in general, the feature functions Φ(x,y)
used in Eq. 1 can represent any function of x and y, it
is typical to encode local relationships only, (as in the
linear representation of HMMs (Roth, 1999; Collins,
2002; Lafferty et al., 2001)) for tractable inference.
However, such restriction usually renders the feature
functions not expressive enough to capture non-local
dependencies present in the problem.

In this paper, we propose the Constrained Condi-
tional Model (CCM), which provides a direct way
to inject prior knowledge into a conditional model, in
the form of constraints. The idea is that combining
simple models with expressive constraints is a more
effective approach to making probabilistic models ex-
pressive. Note that we do not increase the feature
space explicitly by adding more conjunctive features
but rather directly incorporate the constraints by aug-
menting the simple linear models. Since within CCMs
we combine declarative constraints, possibly written
as first order logic expressions (Rizzolo & Roth, 2007),
with learned probabilistic models, we can treat CCMs
as a way to combine or bridge logical expressions and
learning statistical models.

Note that by modeling the constraints directly, the in-
ference problem, Eq. 1, becomes harder to solve, com-
pared to the one used by low order HMMs/CRFs. As
we show later, such a sacrifice is usually very reward-
ing in terms of final performance; it is possible to use
exact methods such as integer linear programming or
approximate inference methods that we found to give
good results.

3.1. Model

The formal definition of CCM is as follows.

We assume (1) a set of feature functions Φ = {φi(·)},
φi : X×Y → R, which typically encode local properties
of a pair (x, y). (And often, the image of φi is {0, 1});
(2) a small set of constraints C = {Ci(·)}, Ci : X×Y →
{0, 1} that encode predicates over a pair (x, y); (3) a
set of functions dCi

: X × Y → R that measure the
degree to which the constraint Ci is violated in (x, y).

A Constrained Conditional Model can be repre-

Constraints as Prior Knowledge

sented using two weight vectors, w and ρ. The score of
an assignment y ∈ Y on an instance x ∈ X is obtained
by:

fΦ,C(x,y) =
∑

wiφi(x,y) −
∑

ρidCi
(x,y). (2)

A CCM then selects as its prediction:

y∗ = argmax
y

fΦ,C(x,y). (3)

Note that a CCM is not restricted to be trained with
any particular learning algorithm. Similar to other
linear models, specialized algorithms may need to be
developed to train CCMs. Unlike standard linear mod-
els, we assume the availability of some prior knowl-
edge, encoded in the form of constraints, when learn-
ing a CCM. When there is no prior knowledge, there
is no difference between CCMs and linear models.

Although the two terms of Eq. 2 may appear simi-
lar, they are very different in several aspects. Essen-
tially, a predicate C(x,y) is viewed as a“first order log-
ical expression”, which is very different from features
Φ(x,y). Due to their first order logic nature, the set of
constraints is compact. (In our experiments, we only
have about 10 constraints, compared to thousands of
features in a feature vector). Moreover, C(x,y) usu-
ally encodes long distance relationships among y vari-
ables, which cannot be captured by the feature func-
tions Φ(x,y). For example, C(x,y) might be “1, if all
yis in the sequence y are assigned different values, 0
otherwise”, which is difficult to model using features.

Importantly, we separate the constraints from features
in Eq. 2 because we know that the constraints should
be trusted most of the time. Therefore, the penalties
ρ can be fixed or handled separately. If we are con-
fident about our knowledge, rather than learning the
{ρi}, we can directly set them to ∞, thus enforcing
the chosen assignment y to satisfy the constraints. It
is important to note that although ρi is fixed, it may
still impact the learning of the weights wi (this point
will be explained in detail in Section 3.3).

3.2. Inference with Constraints

In the earlier related works that made use of con-
straints, the constraints were assumed to be binary
functions; in most cases, a high level (first order logic)
description of the constraints was compiled into a set of
linear inequalities, and exact inference was done using
a integer linear programming formulation(ILP) (Roth
& Yih, 2004; Roth & Yih, 2007; Barzilay & Lapata,
2006; Clarke & Lapata, 2006). Intractable in principle,
ILP proved to be quite successful in practice, since the

constraints were very sparse (a small number of y vari-
ables present in each constraint) (Roth & Yih, 2007).

However, in our CCM formalism, rather than using bi-
nary constraints, we introduce a “degree of violation”
to each constraint. The significance of this is that it
is possible that a label assignment violates the con-
straints in more than one place. Therefore, if binary
function is used, once the value is set to 1, the algo-
rithm loses the ability to discriminate constraint vio-
lations in other locations of the same instance. Note
that even with such a choice, ILP can still be applied
to solve the inference problem Eq. 3. However, here
we choose not to do it, but rather to approximate the
degree of violation incrementally, by estimating it over
an incomplete label assignment. This allows us to de-
sign a search procedure which finds an approximate
solution to Eq. 3 efficiently. In this work, we rewrite
the constraint function as:

dCi
(x,y) =

T∑

t=1

Ĉi(x; y1, . . . , yt),

where T is number of tokens in this instance, and
Ĉi(x; y1, . . . , yt) is a binary function which approxi-
mates the predicate Ci, by computing it over the t-
prefix of the assignment y, (x; y1, . . . , yt−1).

We use this estimation to guide the search procedure
for optimizing the objective function in Eq. 3 with par-
tially labeled sequence. In this paper, we use beam
search as our search procedure. A* search can be also
applied here with admissible heuristic if the ρis are
positive for all constraints. Note that this approxima-
tion methods may not work for all types of constraints.
For example, constraints such as “label A must appear
at least once in the sequence”, do not have “degree”
of violation. For these constraints, the function dC is
the identity function, essentially making them binary
constraints; these constraints are examined only at the
end of the search procedure.

3.3. Training with CCM

In this section, we propose and describe several ap-
proaches of training CCMs. There are two indepen-
dent decisions to be made, leading to four different
training strategies.

The first decision is whether we want to use factored

approaches or joint approaches. Factored approaches
treat the first term (feature term) and the second term
(constraints term) of Eq. 2 separately. That is, w and
ρ are learned independently. This approach is also re-
ferred to Learning Plus Inference (L+I) (Punyakanok
et al., 2005), since we learn the models separately but

Constraints as Prior Knowledge

put the constraints back into consideration at test-
ing time. The joint approach, which we call Infer-

ence Based Training (IBT) (Punyakanok et al., 2005),
learns w and ρ together during training by using the
true objective function with both terms in Eq. 3.

The second decision is whether we want to use hard
constraints or weighted constraints. Using hard con-
straints is equivalent to setting ρ to ∞; in this case, the
notion of “degree” no longer exists, the constraints es-
sentially become Boolean functions, and we do not out-
put assignments which violate them. Using weighted
constraints is important if we know that the prior
knowledge does not hold all the time and it also means
that we need to figure out the penalty ρ for each con-
straint from labeled data.

Training CCMs with factored approaches is simple,
since factored approaches learn w and ρ indepen-
dently. w can be learned with standard algorithms
for training linear models. If we chose to use hard
constraints, the training procedure is complete, given
that the penalty of each constraint is infinity. In this
paper, this approach is called L+CI (Learning Plus
Constrained Inference) . However, it is often the case
that the prior knowledge is not perfect, or that the
weights for every constraint should be different. To
figure out the penalty for each constraint, in this case,
we count how many times it is violated in the labeled
data, and reduce the penalty coefficients for those vi-
olated constraints (refer to (Chang et al., 2008) for
details). This approach is called L+wCI (Learning
Plus weighted Constrained Inference).

Alternatively, we can enforce the constraints during
training as well as testing. In this approach, Inference

Based Training (IBT), the constraints may be hard or
soft, resulting in CIBT and in wCIBT respectively.
Our IBT training algorithms are based on the Percep-
tron update rule.

The pseudocode for CIBT and wCIBT is given in
Algorithm 1, which is similar to the perceptron al-
gorithm. However, the constraints are taken into ac-
count during the training procedure. CIBT is a more
conservative update rule than L+CI, since when the
constraints term “corrects” the label assignment, no
update will be performed. Note that when weighted
constraints are used, the algorithm also updates the
penalty ρ during the training procedure.

Since the constraints in Eq. 2 have non-local nature, we
give up exact inference (with dynamic programming)
and use beam search to find an approximate solution.
The idea of using non-local features in perceptron was
also explored in (Collins & Roark, 2004) that used

Algorithm 1 IBT training: CIBT & wCIBT

Require: D is the training dataset, K is the number
of constraints, M is the number of iterations

1: for i = 1 . . . K do
2: if(hardConstraints) then ρi = ∞ else ρi = 0
3: end for
4: for i = 1 . . . M do
5: for (x,y∗) ∈ D do
6: ŷ = argmax

y
[
∑

wiφi(x,y) −
∑

ρidCi
(x,y)]

7: w = w + Φ(x,y∗) − Φ(x, ŷ)
8: if weightedConstraints then
9: ρ = ρ + dC(x,y∗) − dC(x, ŷ)

10: end if
11: end for
12: end for

beam search for inference with application to syntactic
parsing. Later, (H. Daumé & Marcu, 2005) extended
this idea to other applications. While wCIBT uses a
similar algorithm to assign weights to the constraints,
it differs from (Collins & Roark, 2004; H. Daumé &
Marcu, 2005) in the nature of the “features”: there,
a large number of weights are assigned to “proposi-
tional” non-local features in perceptron, while we as-
sign a small number of weights to constraints that are
high level, ‘first order logic’ predicates.

3.4. Semi-Supervised Learning with CCM

Acquiring labeled data is a difficult and expensive
task. Therefore, an increasing attention has been re-
cently given to semi-supervised learning, where large
amounts of unlabeled data are used to improve models
learned from a small training set (Haghighi & Klein,
2006; Thelen & Riloff, 2002). In this section, we
present COnstraint-Driven Learning (CODL), an al-
gorithm that uses constraints as prior knowledge in
semi-supervised setting (Chang et al., 2007) and show
that prior knowledge plays a crucial role when the
amount of labeled data is limited. CODL makes use
of CCM, which provides a good platform to combine
the learned models and prior knowledge.

As is often the case in semi-supervised learning, the al-
gorithm can be viewed as a process that improves the
model by generating feedback through labeling unla-
beled examples. CODL pushes this intuition further,
in that the use of constraints allows us to better exploit
domain information as a way to label unlabeled exam-
ples, along with the current learned model. Given a
small amount of labeled data and a large unlabeled
pool, CODL initializes the model with the labeled
data and then repeatedly: (1) uses the learned model
and the constraints to label the unlabeled instances,

Constraints as Prior Knowledge

and (2) updates the model via the newly labeled data.

Algorithm 2 COnstraint Driven Learning (CODL):
Using constraints to guide semi-supervised learning.

Require: labeled training set L; unlabeled dataset U; N
learning cycles; a balancing parameter with the super-
vised model γ; a set of constraints {C}; a supervised
learning algorithm learn(.)

1: Init: (w, ρ) = (w0, ρ0) = learn[(w)CIBT/L+(w)CI](L).
2: for N iterations do
3: T = ∅
4: for x ∈ U do
5: (x, ŷ) = InferenceWithConstraints(x,w, ρ, {Ci})
6: T = T ∪ {(x, ŷ)}
7: end for
8: (w, ρ) = (1 − γ)learn[(w)CIBT/L+(w)CI](T) +

γ(w0, ρ0)
9: end for

CODL is summarized in Algorithm 2. CODL initial-
izes the model with traditional supervised learning on
a small labeled set L (line 1). The supervised learn-
ing algorithm learn[(w)CIBT/L+(w)CI](.) used in lines 1
and 8, learns (w, ρ) jointly if the wCIBT approach is
used. If the L+wCI approach is used, it learns w in-
dependently from estimating ρ. If CIBT or L+CI is
used, the learning algorithm learn[(w)CIBT/L+(w)CI](.)
always sets ρ to infinity.

Line 8 in the algorithm should be further clarified.
(Nigam et al., 2000) shows that semi-supervised train-
ing can degrade the learned model’s performance and
suggests to balance the contribution of labeled and
unlabeled data. The parameter re-estimation in line 8
uses a similar intuition, but instead of weighting data
instances, we introduce a smoothing parameter γ

which controls the convex combination of models in-
duced by the labeled and unlabeled data. Unlike the
technique mentioned above, which focuses on näıve
Bayes, our method allows us to weight linear mod-
els generated by different learning algorithms. Due
to space limitations we do not address several other
important issues related to the algorithm, for more
details, please refer to (Chang et al., 2008).

4. Experiments and Results.

We applied our approach to two information extraction
tasks: extracting fields from citations and advertise-
ments. Since in both problems, the fields are typically
related and interdependent, these kinds of applications
provide a good test case for an approach like ours
(the data for both problems is available at: http://

L2R.cs.uiuc.edu/~cogcomp/Data/IE.tgz.). Due to
space restrictions, we omit the details of the datasets,
and report only the main results, omitting the analysis
constraints’ utility, sensitivity to constraint violation

Citations

Start The citation must start with author
or editor.

AppearsOnce Each field must be a consecutive list
of words, and can appear at most
once in a citation.

Punctuation State transitions must occur on
punctuation marks.

BookJournal The words proc, journal, proceed-
ings, ACM
are JOURNAL or BOOKTITLE.

.
TechReport The words tech, technical are

TECH REPORT.
Title Quotations can appear only in titles.
Location The words CA, Australia, NY are

LOCATION.

Table 1. The list of constraints used in the citations do-
main. Some constraints are relatively difficult to represents
in traditional models.

penalty, etc. The reader is referred to (Chang et al.,
2008) for additional details.

Table 1 illustrates the list of constraints for the cita-
tions domain. We measured token-level accuracy of
the learned models and evaluated the impact of the
constraints in the supervised and semi-supervised set-
tings. Table 2 shows the results for HMM (trained
in a maximum-likelihood way). The results high-
light the effect of applying the constraints. A semi-
supervised model driven by constraints and 20 labeled
samples, using L+wCI, is competitive with the tradi-
tional HMM trained with 300 labeled samples.

Table 3 compares the discriminative approaches for
structured perceptron (the baseline, without con-
straints, is denoted L). It can be seen that while
CIBT seems like a reasonable strategy, it does not
perform well. L+CI performs better than the base-
line structured perceptron and CIBT. Moreover, con-
sistently with (Punyakanok et al., 2005), for a small
number of examples, L+CI outperforms all other al-
gorithms while, when the amount of training data is
large enough, learning the constraint violation penal-
ties from the data (wCIBT) achieves the best results.

As observed already in the literature (see for exam-
ple (Ng & Jordan, 2001)), with small amounts of
labeled data, maximum-likelihood (ML) training ap-
proaches outperform discriminative ones. However, for
sufficient amounts of data, and without constraints,
the discriminative approach outperforms the ML ap-
proach. With 300 training samples on the citations
domain, the structured perceptron achieves accuracy
of 89.83% on the citations domain versus 86.35%,
achieved by ML HMM when trained on the same

Constraints as Prior Knowledge

amount of labeled data. However, when learning con-
straint violation penalties, the ML approach consis-
tently outperformed the discriminative approach. One
reason for that is that in L+wCI in ML approach, we
assume that the constraints hold by default, and re-
duce the constraint violation penalty only when the la-
beled data violates the constraints. On the other hand,
in the wCIBT approach in discriminative setting, we
learn constraint violation penalties from scratch. More
data must be needed for successful training. Moreover,
despite trying several learning strategies, we could not
achieve improvements with the semi-supervised train-
ing for the discriminative approach.

Citations(Maximum Likelihood HMM)
Supervised Semi-Supervised

#Train HMM L+wCI HMM L+wCI
5 58.48 70.85 64.39 77.09
10 68.61 75.11 70.34 81.25
20 70.81 81.31 75.83 85.00
300 86.66 94.08 87.80 94.51

Table 2. The impact of using constraints for supervised
and semi-supervised learning (generative HMM) with
5,10,20,300 labeled training samples.

5. Conclusions

This paper provides a unified view of a framework
aimed to facilitate decision making with respect to
multiple interdependent variables the values of which
are determined by learned probabilistic models. We
proposed CCM, a framework that augments linear
models with expressive declarative constraints as a
way to support decisions in an expressive output space
while maintaining modularity and tractability of train-
ing. Importantly, this framework provides a principled
way to incorporate expressive background knowledge
into the decision process. It also provides a way to
combine conditional models, learned independently in
different situations, along with declarative information
to support coherent global decisions.

Supervised setting.
Structured Perceptron-Citations Domain

#Train L L+CI CIBT wCIBT
5 50.14 66.36 64.79 61.65
10 59.90 72.91 68.52 69.64
20 68.26 77.28 72.79 78.46
300 89.83 91.63 87.83 93.89

Table 3. Comparison between discriminative learning
strategies. L+CI outperforms L while CIBT performs
poorly. wCIBT achieves the best results when enough
data is used.

References

Barzilay, R., & Lapata, M. (2006). Aggregation via Set
Partitioning for Natural Language Generation. Proc.of
HLT/NAACL.

Chang, M., Ratinov, L., & Roth, D. (2007). Guiding semi-
supervision with constraint-driven learning. Proc. of the
ACL.

Chang, M., Ratinov, L., & Roth, D. (2008). Structured
learning with constrained conditional models. In Sub-
mission.

Clarke, J., & Lapata, M. (2006). Models for sentence
compression: A comparison across domains, training re-
quirements and evaluation measures. Proc. of ACL.

Collins, M. (2002). Discriminative training methods for
hidden Markov models: Theory and experiments with
perceptron algorithms. Proc. of EMNLP.

Collins, M., & Roark, B. (2004). Incremental parsing with
the perceptron algorithm. Proc. of the ACL.

H. Daumé, I., & Marcu, D. (2005). Learning as search opti-
mization: approximate large margin methods for struc-
tured prediction. Proc. of ICML.

Haghighi, A., & Klein, D. (2006). Prototype-driven learn-
ing for sequence models. Proc. of HTL-NAACL.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Condi-
tional random fields: Probabilistic models for segment-
ing and labeling sequence data. Proc. of ICML.

Ng, A. Y., & Jordan, M. I. (2001). On discriminative vs.
generative classifiers: A comparison of logistic regression
and näıve bayes. Proc. of NIPS (pp. 841–848).

Nigam, K., McCallum, A., Thrun, S., & Mitchell, T.
(2000). Text classification from labeled and unlabeled
documents using EM. Machine Learning Journal, 39.

Punyakanok, V., Roth, D., Yih, W., & Zimak, D. (2005).
Learning and inference over constrained output. Proc.of
IJCAI.

Rabiner, L. R., & Juang, B. H. (1986). An introduction to
hidden markov models. IEEE ASSP Magazine, 4–16.

Rizzolo, N., & Roth, D. (2007). Modeling Discrimina-
tive Global Inference. Proc. of the ICSC (pp. 597–604).
IEEE.

Roth, D. (1999). Learning in natural language. Proc.of
IJCAI.

Roth, D., & Yih, W. (2004). A linear programming for-
mulation for global inference in natural language tasks.
Proc. of CoNLL.

Roth, D., & Yih, W. (2007). Global inference for entity and
relation identification via a linear programming formu-
lation. Introduction to Statistical Relational Learning.
MIT Press.

Thelen, M., & Riloff, E. (2002). A bootstrapping method
for learning semantic lexicons using extraction pattern
contexts. Proc. of EMNLP.

