Complex Model ⇒ Rich Prior Knowledge

COMPLEX GENERATIVE MODEL

EXAMPLE: Grammar \rightarrow sentence, Topic Model \rightarrow document

GOOD: Generative models are modular \Rightarrow compositional

BAD: Inference \Rightarrow hard (non-convex) problem

Prior Knowledge: Model structure & priors

Complex Word Feature Model

EXAMPLE: Attributes \rightarrow Morphology, POS, NER, SynSet

 $Relations \to WordNet,\ Ontology,\ Referred\ Object$

GOOD: Rich set of features for words $\Rightarrow \gg$ constraints

BAD: Intractability in traditional discrete modeling

PRIOR KNOWLEDGE: Attributes and relations relevant to task

DEFINING SIMILARITY ALLOWS PK EXPLOITATION

Kernel over Complex Data Structure

EXAMPLE: Similar sentences \Rightarrow similar derivation (parse tree)

Similar words \Rightarrow similar paths in ontology

Relations: Similarity \Rightarrow dot product \Rightarrow kernel

GOOD: Kernels are compositional (i.e. hierarchically or \sum)

BAD: Generalization issues

PRIOR KNOWLEDGE: Choosing form of structural similarity

JUST SPECIFY A SIMILARITY NOTION AND YOU GET:

- Implicit inference of latent variables from input
- Implicit feature selection
- Convex (regularized) optimization problem

