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Abstract

In this paper, we propose a robust statisti-
cal semantic tagging model trained on com-
pletely unannotated data. The approach re-
lies mainly on prior domain knowledge to
counterbalance the lack of semantically anno-
tated treebank data. The proposed method
encodes longer contextual information by
grouping strongly related semantic concepts
together into cohesive units. The method is
based on hidden Markov model (HMM) and
offers high ambiguity resolution power, out-
puts semantically rich information, and re-
quires relatively low human effort. The ap-
proach yields high-performance models that
are evaluated on two different corpora in two
application domains in English and German.

1. Introduction

A spoken dialog system with an ideal speech recog-
nizer can barely serve any purpose without a spoken
language understanding unit (SLU) that can infer the
intention underlying a recognized utterance. Spoken
language understanding can be easy for simple appli-
cation domains where users are restricted in the choice
of their formulation of a spoken request. However, the
task gets more challenging when a dialog system allows
human-to-human like conversation because the natural
phenomena of spontaneous speech such as hesitations,
false starts, filled pauses, etc. introduce undesirable
noise into the input.

Spoken language understanding has been a topic of re-
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search since the 70s (Woods, 1983) and spontaneous
spoken language understanding has been of particu-
lar interest since the early 90s when multiple research
laboratories from both academia and industry partic-
ipated in the DARPA-funded Air Travel Information
System (ATIS) evaluations (Price, 1990). In general,
the approaches in the domain of spoken language un-
derstanding can be grouped as data-driven, rule-based
and a combination of the two. Data-driven approaches
such as those implemented in CHRONUS of AT&T
(Pieraccini & Levin, 1993), and Hidden Understand-
ing Model of BBN (Miller et al., 1994) estimate model
parameters from data by counting the frequencies of
transitions between states, word observations while in
each state and which states start a sentence. These
statistical models are robust and perform well but re-
quire a large corpus of fully annotated training ex-
amples, which is often not practically available. An-
other popular statistical approach that uses HMMs in
SLU is the Hidden Vector State model of Cambridge
University (He & Young, 2005). In the Hidden Vec-
tor State Model, state transitions between two states
are decomposed into separate stack operations that
transform one state to the other. A remarkable fea-
ture of the HVS model is that it can be trained on
“lightly” annotated data and it captures hierarchical
structure. Rule-based systems, on the other hand,
such as those implemented in TINA of MIT (Sen-
eff, 1992), PHOENIX of CMU (Ward & Issar, 1994),
and GEMINI of SRI (Dowding et al., 1994) use hand-
crafted semantic rules to extract meaning from a spo-
ken utterance. Rule-based systems do not require a
large amount of semantically annotated data and they
perform very well when the structure of the spoken
utterance is covered by the grammar. However, rule-
based systems, in general, are very expensive to build
and maintain since they require extensive manual in-
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volvement and expertise.

Different combinations of rule-based and statistical ap-
proaches have also been investigated. For instance,
the generative HMM/CFG (context free grammar)
model described in (Wang et al., 2005) integrates a
knowledge-based approach into a statistical learning
framework.

In this paper, we describe an approach towards spo-
ken language understanding that makes extensive use
of a priori domain knowledge in order to build domain-
dependent semantic models with relatively less human
intervention on completely unannotated data. We es-
sentially add semantic information to the output of
the speech recognizer of our dialog system so that a
deterministic program can easily infer the intention
of the user from the output of the semantic tagger.
Assuming that an utterance consists of a sequence of
concepts, the purpose of the required model is to de-
termine the most likely sequence of semantic concepts
that could have generated the observed sequence of
words. The notably distinguishing ability of hidden
Markov models (HMMs) to estimate the probability
of hidden events from observed ones makes them a
natural choice for this kind of task.

The remaining part of the paper is organized as fol-
lows. Section 2 briefly describes the architecture of our
telephone-based spoken dialog system. The modeling
approach is described in detail in Section 3. Section
4 describes the data used in the experiments that are
described in Section 5. Finally, concluding remarks
are presented in Section 6.

2. Architecture of the Dialog System

As can be seen in the high-level architecture of the sys-
tem in Figure 1, our VoiceXML-based telephone dia-
log system consists of a telephony interface component
to deliver calls into the system; an input component
to accept, recognize and understand spoken requests
from a caller; an output component to play prompts
and responses back to the user; a back-end to serve
dialog scripts and other resources; and at the core is a
dialog manager that orchestrates the various compo-
nents of the system.

The input component of the dialog system consists
of an audio source component, a speech recognizer, a
grammar (language model) component and a seman-
tic analyzer. The recognition resources used by the
recognizer; namely, the acoustic model, the language
model, and the pronunciation lexicon are prepared of-
fline using HTK (Young et al., 2006) and the real-time
speech recognizer is built using ATK (Young, 2007).

Figure 1. High-level Block Diagram of the Dialog System.

The output of the speech recognizer is sent to the se-
mantic analyzer which we describe in this paper so that
the text output of the recognized utterance is enriched
with semantic information.

At the core of the system is c©OptimTalk 1 - a
VoiceXML platform which consists of not only a
VoiceXML interpreter but also a CCXML interpreter,
and other abstract interfaces for the integration of our
ASR engine, TTS engine, telephony interface, seman-
tic interpreter, etc. The VoiceXML interpreter in Op-
timTalk serves as the dialog manager in that it exe-
cutes the dialog by calling the appropriate methods of
the various components of the dialog system as shown
in Figure 1.

3. Modeling Approach

Understanding an application domain requires a pre-
cise identification of the activities, entities, events, at-
tributes and relations within the domain of discourse.
The ontologies of the two application domains of in-
terest in this paper - namely, airline travel planning
and train inquiries, are modeled in two stages. In the
first stage, a detailed list of concepts that are relevant
in each application domain are identified using prior
domain knowledge and domain-specific example sen-
tences from the training data. As a result, 68 semantic
concepts in the domain of airline travel planning and
50 in that of train inquiries are identified. In the sec-
ond stage, groups of attributes that describe a single
semantic concept are grouped together to form cohe-
sive units referred to as super-concepts. For instance,
a super-concept DATE contains attributes such as

1http://www.optimsys.eu
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DAY OF MONTH, DAY OF WEEK, MONTH, and
YEAR. As can be imagined, the prior knowledge used
to determine which attributes should belong together
to form a super-concept is a commonplace knowledge.
Moreover, in order to model multi-word city names
and train stations such as “New York City” or “Berlin
Friedrichstrasse”, we model each with multiple states.
The number of sub-concepts in a super-concept can
vary; on average, a super-concept contains 3.6 sub-
concepts in each application domain.

Accordingly, 14 super-concepts for airline travel plan-
ning and 9 for the domain of train inquires are iden-
tified. Figure 2 depicts examples of super-concepts
along with their attributes (sub-concepts) in the do-
main of airline travel planning.

Figure 2. Example super-concepts

Other single state concepts include COUNTRY,
STATE, TO, FROM, AT, IN, ON, ARRIVAL,
DEPARTURE, RETURN, COMMAND, YES, NO,
DUMMY, ...

The rationale behind grouping related sub-concepts
together is threefold. First, it improves the predic-
tive power of the model since adjacent related concepts
are well coupled. Second, the models produce outputs
that are semantically rich and more informative since a
phrase is more meaningful than a single word. For in-
stance, phrases like “Saturday the sixteenth of August
two thousand eight” or multiword location names such
as “Washington D. C.” etc. would be more informative
if the phrases are labeled as “DATE” and “CITY”,
rather than tagging each piece with an atomic se-
mantic label. Third, it offers high ambiguity resolu-
tion power. For instance, ”twenty six” in ”November
twenty six” would not be confused with other seman-
tic labels such as HOUR, MINUTES, QUANTITY,
FLIGHT NUMBER, ID NUMBER, etc. as DATE is
a super-concept whose attributes are well coupled.

The initial HMMs are defined to be fully connected

networks such that any state or sub-network can fol-
low any other single state concept or sub-network with
equal probability. Self-loops are allowed in most of
the semantic concepts to account for multiple obser-
vations from some concepts such as DUMMY, PE-
RIOD OF DAY, DAY OF MONTH, MINUTES, etc.
Every sub-network has its own non-emitting entry
and exit states and the transitions between the states
within a sub-network are initially ergodic. A one-step
transition from the entry state to the exit state of a
sub-network is explicitly prohibited to prevent non-
emitting loops. Finally, two more non-emitting states
INIT and FINAL are introduced to mark the begin-
ning and end of the entire network. Figure 3 shows
the partial structure of the HMM for the domain of
airline travel planning.

Figure 3. Structure of the HMM

The emission probabilities are initialized by classifying
the words in the vocabulary of the application domains
into the known set of lexical classes. All words belong-
ing to a semantic label are set equiprobable.

Once we define the model, it may be necessary to bias
the transition and emission probabilities of the HMM
a bit since we do not have hand-labeled corpus (Elwor-
thy, 1994). This can be done by performing prelimi-
nary tests on the training or development data and in-
troducing necessary contraints. For instance, in order
to disambiguate words belonging to multiple seman-
tic classes, some unlikely transitions that could not
be resolved by the model can be explictly prohibited.
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To provide easy tuning and to keep the level of hu-
man effort to the minimum, we implemented a model
compiler that generates the transition and emission
probabilities of the model given the structure and con-
straints of the HMM in the form shown in Figure 4.

Figure 4. Excerpt from the model definition

The initial model transition probabilities can be easily
tuned as required using the keywords “all”, “high”,
“low”, “except”, and “none”. The model compiler
also allows us to try different modeling approaches at
different levels of hierarchy with relatively less effort
than would be required otherwise. The keywords are
self-explanatory; for instance, “− >except{...}” means
that all transitions out of a state (e.g. INIT) or sub-
network (e.g. CITY) are equally likely except the
state(s) specified in braces (e.g. FINAL). The keyword
“high” sets a higher probability to the specified tran-
sitions than to the rest. For every sub-network the en-
try state is denoted by the name of the super-concept

(e.g. CITY) and the exit state by a tilde followed by
the name of the super-concept (e.g. ~CITY).

Given “well-informed” initial models, the Expectation-
Maximization (EM) algorithm can be used to estimate
reliable model parameters. The algorithm starts with
the carefully defined initial HMM described above and
iteratively refines the model parameter values. Once
we have a well-trained model, the Viterbi algorithm
can be used to find the highest probability semantic
label sequence which corresponds to the sequence of
observed words.

4. Data Description

The semantic model for airline travel planning domain
is trained and evaluated on the transcriptions of speech
data from the 2001 DARPA Communicator Evaluation
telephone speech corpus (Walker et al., 2003). Table 1
describes the training and test sets of the airline travel
planning domain used in the experiments described in
Section 5.

Table 1. Description of data for airline travel planning do-
main

Set # of Utt. # of Uniq. Words

Training 8000 915
Test 1000 581

The transcriptions of 8000 utterances were selected
from the training data that we used to build the acous-
tic model for our speech recognizer by removing too
many occurences of some very short utterances such as
“yes”, and “no”. For testing purposes, 1000 distinct,
relatively longer utterance transcriptions are selected
from a 5000 utterance test-set. The average number
of words per utterance are 4.04 and 8.98 in the train-
ing and test sets of the airline travel planning domain,
respectively.

For the domain of train inquiries, we use the transcrip-
tions of utterances from c©Erlanger Bahn Anfragen
(ERBA) speech corpus in German. Table 2 describes
the data used to build and evaluate the German se-
mantic model.

Table 2. Description of data for train inquiries domain

Set # of Utt. # of Uniq. Words

Training 8000 921
Test 1000 830
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The utterances in the domain of train inquiries are
long, well-structured, and grammatically correct ut-
terances. The average number of words per utterance
are 12.26 and 11.76 in the training and test sets, re-
spectively.

5. Experiments and Results

The performance of the systems is evaluated using pre-
cision, recall and F-measure where precision (P) is the
number of correctly labeled concept chunks out of all
tagged concepts, recall (R) is the number of correctly
identified concepts from the ground truth annotation.
F-measure is the harmonic mean of precision and recall
defined by Equation 1

F =
2PR

P + R
(1)

5.1. The Effect of the Proposed Modeling

Method

If we randomly assign to each token one of its possi-
ble tags, we achieve an average performance rate of
56.4% in F-measure. This can be considered as the
minimum average baseline performance on the airline
travel planning domain.

Table 3 summarizes the performance gain mainly due
to the modeling approach we described in Section 3.
“Flat” in Table 3 refers to a flat, ergodic HMM model,
before grouping of related concepts where each state
is one of the sub-concepts or single state concepts de-
scribed in Section 3. “Grouped” in Table 3 refers to
a model just after grouping related sub-concepts to-
gether. In both cases no tuning is performed.

Table 3. Flat vs. Grouped initial models on Communicator
task

Model P(%) R(%) F-Measure(%)

Flat 57.32 66.42 61.53
Grouped 85.67 77.98 81.64

As can be seen in Table 3, the performance was im-
proved by 20.11% absolute in F-measure just after
grouping related concepts together using our prior do-
main knowledge. This suggests the modeling approach
we used is quite suitable for this kind of task.

The experiments that follow describe the performance
of both airline travel planning and train inquiries sys-
tems stage by stage using the proposed modeling ap-
proach.

5.2. Performance of the Initial Models after

Tuning

Table 4 depicts the performance of the initial models
tuned as described in Section 3 before EM training.

Table 4. Performance of the tuned initial models

Data P(%) R(%) F-Measure(%)

Communicator 96.15 84.46 89.92
ERBA 94.90 94.19 94.54

As can be observed, the performance of the initial
model after tuning is improved significantly.

5.3. Performance of the Models after Training

The results after performing EM training are summa-
rized in Tables 5.

Table 5. Performance of the models after training

Data P(%) R(%) F-Measure(%)

Communicator 98.75 84.58 91.12
ERBA 96.94 96.19 96.56

The best performance was achieved after only one it-
eration of training on the airline travel planning and
two on the train information inquiries domain, respec-
tively. It can be noted in Table 5 that the recall,
mainly for the airline travel planning domain, is quite
low. This is due to unseen transitions and “out-of-
vocabulary” words (OOVs) that resulted in some un-
parseable utterances. This is, in turn, attributed to the
sparse data problem and the inevitability of OOVs. In
order to combat this problem, we smoothed transition
and emission probabilities. The recall in the train in-
quiries domain is high because the rate of OOVs in the
German test-set is low.

5.4. Performance after Smoothing

In the case of transitions, we assigned a very small non-
zero probability for all allowable transitions not seen in
the training data. For words not found in the lexicon,
we introduced a vocabulary item “oov” in those lexical
classes where there is no exhaustive list of words; for
instance, CITY, DUMMY, AIRLINE, etc. The prob-
ability of the “oov” word in a concept is set to the
sum of the probabilities of all words belonging to that
concept that occur only once in the training set; the
rest of the probabilities are discounted accordingly so
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that all sum up to one. As a result, all the sentences
could be parsed and 69% of the “oov” words out of 135
in the domain of airline travel planning were correctly
labeled.

Accordingly, the performance of the models is signifi-
cantly improved as can be seen in Table 6.

Table 6. Performance of the models after smoothing

Data P(%) R(%) F-Measure(%)

Communicator 96.91 97.12 97.01
ERBA 96.82 97.41 97.11

5.5. Example Tagged Outputs

An example tagged output of an utterance in the do-
main of airline planning is:
(I want to fly) DUMMY (from) FROM (Los Ange-
les) CITY (to) TO (Osaka) CITY (Japan) COUNTRY
(on) ON (September thirtieth) DATE (in the morning)
PERIOD OF DAY
An example tagged output of an utterance in the do-
main of train inquiries in German2 is:
(ich moechte) DUMMY (alle) MODIFIER (Ab-
fahrts) DEPARTURE (und) CONNECTIVE (Ankun-
ftszeiten) ARRIVAL (aller) MODIFIER (Zuege)
TRAIN (nach) TO (Minden) LOCATION (an) ON
(einem) DUMMY (Wochentag) DATE (zwischen neun
und sechs Uhr) PERIOD OF DAY

6. Conclusions

In this paper, we described the use of prior domain
knowledge to build an HMM-based semantic tagging
model with four main virtues - namely, it is trained on
completely unlabeled data, it offers high ambiguity res-
olution ability, it outputs naturally appealing and se-
mantically rich information, and it requires relatively
low human effort as the model itself takes care of many
sources of ambiguity. Moreover, the model is robust in
that it could parse unseen observations and could cor-
rectly label a significant amount of out-of-vocabulary
words. The performance of the proposed model is
97.01% for airline travel planning and 97.11% for train-
inquires system in F-measure on 1000-utterance test-
sets. The success of this approach relies mainly on the
use of a priori domain knowledge to build a reliable
initial model while keeping the human effort to the
minimum.

2Translation of the German utterance: I want all depar-
ture and arrival times of all trains to Minden on a weekday
between nine and six o’clock
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