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Abstract

This paper evaluates the use of prior knowl-
edge to limit or bias the choices of a classifier
during otherwise unsupervised training and
classification. Focusing on effects in the un-
certainty of the model’s decisions, we quan-
tify the contributions of the knowledge source
as a reduction in the conditional entropy of
the label distribution given the input cor-
pus. Allowing us to compare different sets of
knowledge without annotated data, we find
that label entropy is highly predictive of final
performance for a standard Hidden Markov
Model (HMM) on the task of part-of-speech
tagging. Our results show too that even ba-
sic levels of knowledge, integrated as labeling
constraints, have considerable effect on classi-
fication accuracy, in addition to more stable
and efficient training convergence. Finally,
for cases where the model’s internal classes
need to be interpreted and mapped to a de-
sired label set, we find that, for constrained
models, the requirements for annotated data
to make quality assignments are greatly re-
duced.

1. Introduction

This paper investigates one of the simplest methods
for integrating prior knowledge into the training of
an unsupervised classifier, in particular the restric-
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tion or, more generally, weighting of output labels for
each given input. In this setting, we focus on how the
knowledge source constrains the set of available choices
for the learner, effectively reducing the uncertainty in
the classification decision. More precisely, viewing this
guidance as a distribution over label output for the
input data, we then may quantify and compare the
effects of different sets of knowledge in terms of condi-
tional entropy, without the need for annotated data.

To evaluate the relationship between knowledge con-
straints, uncertainty, and classification performance,
we take the basic task of part-of-speech tagging,
with the standard, first-order Hidden Markov Model
(HMM) tagger of Merialdo (1994). We apply a number
of basic constraint sets during training and evaluation,
from lexical rules to partial tagging dictionaries, and
find that the conditional label entropy is highly predic-
tive of final model performance, with even the weakest
constraints leading to large increases in classification
accuracy. In addition, we see considerable reductions
of variance in performance with respect to initial con-
ditions and accelerated training convergence. Finally,
addressing the problem of assigning interpretable la-
bels to internal model classes, we find that the more
constrained models require much less annotated data
to find quality mappings.

The remainder of the paper is organized as follows.
After discussing related work in the next section, we
formalize the learning setting and clarify our entropy
calculation in Section 3. Following a brief description
of our constraint sets in Section 4, we present our re-
sults in Section 5 and conclude with a discussion in
Section 6.
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2. Related Work

A major impetus of the present study was John-
son’s (2007) comparison of Expectation-Maximization
(EM) and Bayesian estimators for unsupervised tag-
ging, in particular the following conclusions of that
work: (1) EM can be competitive with more sophis-
ticated Bayesian methods, (2) greatly subject to the
choice of evaluation method, but (3) to a certain ex-
tent, it is possible to compensate for EM’s weakness
in estimating skewed distributions by constraining the
model to exclude rare events. While this is certainly
not an argument against the use of better estimators,
it does suggest the potential benefits of even simple
means to guide model training.

Merialdo (1994) introduced the statistical tagging
models employed in this paper and many, many others,
both for supervised and unsupervised training. Like
the original, much subsequent work on unsupervised
tagging has relied on a full dictionary of possible tags
for each word, which in practice constrains the training
sufficiently to obviate the need for remapping of model
output. More recent approaches with discriminative
models (Smith & Eisner, 2005) and Bayesian estima-
tors (Goldwater & Griffiths, 2007) have achieved good
performance while reducing the dictionary. Haghighi
and Klein (2006) require only a limited set of class
prototypes and representations of their context distri-
butions, while Toutanova and Johnson (2008) use only
the possible groups of tags over which words are seen
to vary.

Our simple integration of knowledge constraints may
be viewed as an instance of virtual evidence (Pearl,
1988), a method to account for external judgements
not easily expressed in terms of the probability dis-
tributions and dependencies encoded by the model.
Bilmes (2004) suggests virtual evidence as a means to
integrate the assessments of external models. Chang
et al. (2007) uses weighted constraints successfully
to guide search in an iterative algorithm for semi-
supervised learning.

3. Knowledge as a Constraint on
Uncertainty

To evaluate the effects of prior knowledge in entropic
terms, we extend the usual formulation of a classifier to
include, along with each input x, a mapping φx(y) of
each output label y to a non-negative weight. That is,
we define a classifier as a mapping X × (Y → R)→ Y.
In the supervised case, φx(y) is non-zero for exactly
one value of y, while in the purely unsupervised case,
the weights are equal for all values of y. Normalizing

the weights and interpreting them as a distribution
p(Y = y|X = x), the conditional entropy H(Y |X) is
a natural measure of the uncertainty facing the clas-
sifier and a means to compare and predict the effects
of different sets of knowledge.1 Because the uniform
distribution has the maximum entropy for an event
space of a given cardinality (Cover & Thomas, 1991),
any adjustment to the label weights must reduce en-
tropy relative to the purely unsupervised case. As-
suming this reweighting does not penalize or eliminate
the correct label, we expect a similar improvement to
model accuracy.

3.1. Entropy Calculation

For sequential labeling tasks such as part-of-speech
tagging, we generally label each token individually to
avoid sparsity in our estimation, and so it is natural
to take the x and y in the p(y|x) above to refer to a
single input token and label. Some of the constraints
in our experiments involve context, however, so that
φx(y) may vary between instances of x in the corpus.
Accordingly, we must introduce some notion of context
C and calculate the entropy as

H(Y |X, C) =
X

x

X
c

p(x, c) H(Y |X = x, C = c)

=
X

x

p(x)
X

c

p(c|x)
X

y

p(y|x, c) log p(y|x, c)

If, however, we estimate p(c|x) by simple counts over
contexts that are equivalent under our constraints, we
effectively sum out c, computing H(Y |X = x) as an
average of H(Y |X = x,C) in all contexts. Thus, while
our calculations use p(y|x, c), we will continue to speak
of H(Y |X) for the remainder of the paper.

4. Constraints on Unsupervised
Tagging

Great care is always required to evaluate an unsuper-
vised classifier fairly against a labeled corpus, but eval-
uation is even more of a delicate matter when addi-
tional prior knowledge is involved. Ideally our knowl-
edge should not be derived from the corpus, or we are
crossing the line into supervised learning, but, practi-
cally, a successful set of constraints must accord with
the knowledge implicit in the annotated data and be
expressed in similar terms.2 Accordingly, unless noted
otherwise, we construct the following constraint sets

1This value also accords with the common informal
characterization of classification difficulty in terms of aver-
age possible labels per input element.

2For example, an educated speaker of English would dif-
ferentiate between the uses of the word ‘to’ as a preposition
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from the knowledge of a native speaker and from gen-
eral grammar resources, independent of the corpus.

Base Lexical Constraints For our base rule set, we
include knowledge about punctuation, numbers, and
capitalization, with numbers forced to either contain
a digit or recursively to follow another possible number
(to handle, e.g. ‘10 million’), and proper nouns defined
similarly with respect to capitalization.

Closed Tags For each closed part-of-speech tag, we
then add (incomplete) lists of possible words, derived
from external sources as available.

Top Words Like much work on unsupervised tag-
ging, we finally apply a tagging dictionary built from
the corpus, but only for the 100 or 200 most common
words, a much more limited amount of annotation.

For most of the experiments, we apply the above as
hard constraints, with all violating hypotheses ex-
cluded, but we also examine the use of soft constraints,
where hypotheses that observe the rules are simply
preferred.

5. Experimental Results

5.1. Experimental Overview

In our experiments, we performed unsupervised train-
ing of the simple first-order HMM tagging model of
Merialdo (1994), using the EM algorithm with a va-
riety of constraint sets. Our implementation used the
Graphical Models Toolkit (GMTK) (Bilmes & Zweig,
2002), with hard and soft constraints integrated via
the toolkit’s deterministic node construct.3 For train-
ing and evaluation, we used the Wall St. Journal por-
tion of the Penn Treebank, version 3 (Marcus et al.,
1993), with data sets containing the 48k, 96k, and 193k
words following the start of section 2.

To account for the local search properties of EM, we
repeated each experiment 10 times, training for 500 it-
erations, with parameters initialized by small, random
perturbations from the uniform distribution. Because
our constraints cause no changes to the model’s pa-
rameter set, it was possible to use the same random
initializations across constraints for each data set, and
thus attempt to control for any bias from particularly
good or bad initialization points.4

and as an infinitive verb marker, but in the Penn Treebank
corpus, both are labeled ‘TO’.

3We thank Chris Bartels for assistance on model imple-
mentation.

4From casual inspection, however, we did not see any

For evaluation, we used the ‘many-to-one’ and ‘one-
to-one’ labeling procedures as described by Johnson
(2007), which greedily assign each model state to the
annotated tag with which it occurs most often, respec-
tively either allowing or prohibiting multiple states to
map to a single tag. While, as Johnson (2007) and
(Haghighi & Klein, 2006) mention, we may cheat with
the many-to-one labeling by inflating the number of
model states, this flaw seems less critical if the state
count equals the size of the tag set, as in our experi-
ments.

5.2. Results and Analysis

As summarized in Table 1 we find that even the least
constrained models show considerable improvement
over the baseline, with up to 20-30 percentage points
gained in accuracy. Despite the simplistic nature of
the model, performance is often surprisingly close to
much more sophisticated models and training tech-
niques, e.g. (Smith & Eisner, 2005; Haghighi & Klein,
2006; Goldwater & Griffiths, 2007). As we might ex-
pect, the effects are most pronounced on the smaller
data sets, where the constraints serve as a strong prior
compensating for lack of evidence, similar to what we
see with the Bayesian models of Goldwater and Grif-
fiths (2007). The effect on both the many-to-one and
one-to-one label assignments is roughly equal across
experiments, so that the difference in accuracy be-
tween the two assignments changes little as we add
constraints.

To assess the effect of uncertainty on final model per-
formance, we computed the Pearson correlation coef-
ficient r2 between the label entropy and the classifier
accuracy, as shown in Figure 1. While the two are not
fully correlated – and we should not necessarily expect
them to be – the entropy measure is quite indicative
of performance, and we conclude that is a reasonable
means for predicting the effects of domain knowledge
when annotated data is unavailable for evaluation.

Of course, knowledge is helpful only if the correct
answer is not among the excluded hypotheses. We
explored the effects of imperfect knowledge by ap-
plying our closed-tag rules set as a hard constraint
and then as a soft constraint with relative likelihood
weights ranging from 2:1 to 16:1. Though these rules
are incomplete for most of the tags covered, and thus
the correct labels for many words were excluded, we
saw the hard constraints perform best, edging out the
highest-weight soft constraints. It appears that, while

performance patterns across runs. One might argue that
different constraints lead to completely different optimiza-
tion surfaces and extrema under EM.
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Model
48k 96k 193k

H(Y |X) N:1 1:1 H(Y |X) N:1 1:1 H(Y |X) N:1 1:1

Base 5.49 33.8 (3.7) 21.7 (2.8) 5.49 42.9 (4.4) 30.1 (3.2) 5.49 52.1 (2.5) 34.4 (3.1)
Lower case 5.49 42.3 (2.2) 29.7 (2.3) 5.49 48.9 (2.4) 34.6 (2.5) 5.49 52.7 (2.3) 36.8 (1.9)
+Baselex 4.31 53.6 (0.8) 39.8 (1.9) 4.29 57.3 (0.8) 42.4 (1.6) 4.30 60.7 (0.8) 43.9 (1.7)
+Closed 3.71 64.9 (0.8) 54.3 (0.8) 3.69 66.2 (0.5) 55.5 (0.9) 3.70 67.4 (0.6) 56.4 (0.6)
+Top 100 3.49 69.2 (0.0) 57.8 (0.3) 3.47 70.1 (0.1) 58.6 (0.2) 3.48 71.0 (0.2) 59.5 (0.1)
+Top 200 3.49 71.9 (0.1) 60.5 (0.6) 3.47 72.8 (0.1) 61.7 (0.3) 3.48 73.8 (0.1) 62.1 (0.3)

Table 1. Tagging accuracy with increasing knowledge (as measured by conditional label entropy) on different data sets.
Models were evaluated using the many-to-one and one-to-one label assignments, with results averaged over 10 runs,
standard deviation in parentheses. Except for the base model, all words were mapped to lower case to reduce vocabulary
size.
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Figure 1. Correlation between conditional entropy
H(Y |X) and accuracy, for all runs on the 193k data
set.
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Figure 2. Mean accuracy for constraint sets over train-
ing iterations (only minor increases after 200), for 45-
state bigram, 193k data set.

the hard rules forced errors, the most common words
in each tag were covered fairly well by the grammar
lists we used, and the extra reduction in uncertainty
outweighed the more obscure errors. A similar effect
is observed in Banko and Moore (2004), where they
find quite significant gains by filtering out the rare
tags of each word. This does not mean necessarily
that only hard constraints are useful (indeed, Chang
et al. (2007) finds soft constraints to be superior), but
it seems they can be beneficial even when they over-
simplify the facts, especially for a simple model that
has little hope of labeling rare and difficult events cor-
rectly. We assume, too, that it would be more ideal
to separate rules according to our confidence in them,
and assign weights accordingly.

Finally we found that increased knowledge constraints
lead to a reduction in the variance of model perfor-
mance across runs, a major benefit given the problems
of local extrema in most unsupervised methods and the
difficulty of choosing an optimal model without anno-
tated data. For our most constrained ‘Top 100’ and

‘Top 200’ model sets, the standard deviation of the ac-
curacy was generally under 0.5 percentage points. Ad-
ditional knowledge also constrained the training pro-
cess, with accuracy converging in fewer iterations. Fig-
ure 2 plots the accuracy for models trained on the 193k
data set, illustrating how the addition of rules leads to
a steeper optimization surface for EM.

5.3. Labeling and Annotation

While the use of fully annotated data to label inter-
nal model states is a practical necessity of evaluation
in this and similar work, such an artificial scenario is
problematic for those real-world situations where clas-
sifier output needs to be interpreted or passed to an-
other component in the pipeline (i.e. not just treated
as clustering). In such cases, we face the question of
how much labeled data is required to perform a quality
label assignment.

To explore this issue, we labeled the output of different
models trained on the 193k data set, but with only
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Mapping Accuracy and Labeled Data

Figure 3. Accuracy convergence of many-to-one labeling
methods, as increasing portions of the training data an-
notations are used to make label assignments, for models
trained on the 193k corpus.

part of the annotated data available to generate the
mappings. Figure 3 shows the results of the many-to-
many method, plotting each data set proportion with
the accuracy of the induced label mapping, relative
to the best accuracy when all data was used.5 As
an example, consider the case of the unconstrained,
lowercased model. With 10% of the data, or roughly
19k words, the labeling accuracy was 48.1, compared
to 52.7 when the entire set is used, so that this partial-
data assignment performs at 0.91 of its full accuracy.

Our first impression is that labeling performance con-
verges relatively quickly, but we should note that even
the 5% portion represents nearly 10,000 words of an-
notation. Still, with the more constrained knowledge
sets, 90% of optimal accuracy is reached with only 2%
of the data (4k words), so once again the use of prior
knowledge is extremely beneficial in a practical setting.

6. Discussion

We have presented the view of prior knowledge as a re-
duction of uncertainty in the training of unsupervised
classifiers, showing label entropy to be an effective and
predictive measure of the contributions of that knowl-
edge, and a means for assessment without annotated
data. We found that quite basic domain knowledge can
lead to significant performance improvements, with

5One-to-one convergence was slightly faster, but the rel-
ative rates of the different constraints were similar.

the additional benefits of faster training convergence,
better stability, and reduced data requirements for la-
bel mapping. While the effects here are no doubt exag-
gerated by our impoverished models and data sets and
the simplicity of the task, our results suggest that even
the simple integration of prior knowledge is worthwhile
where labeled data is lacking.
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